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The fast multipole boundary element method (FMBEM) which is suitable for solving large-scale problems can accelerate 

computation speed and save memory. The preconditioner which can improves matrix characteristics is a critical part to develop an 

efficient FMBEM. A new preconditioner based on sparse approximate inverse (SAI) is proposed for the Galerkin FMBEM of 

electrostatic field. The left-preconditioned generalized minimal residual (GMRES) and right-preconditioned GMRES are compared, 

and the effect of different sparsity patterns on the preconditioning is studied. Numerical results of different models show that the 

preconditioner can achieve quickly convergence. The algorithm of FMBEM used this preconditioner can be used for the electrostatic 

field calculation of the converter valve shielding system in DC transmission system. 

 
Index Terms—Boundary element method, electrostatic field, fast multipole method, preconditioner. 

 

I. INTRODUCTION 

HE PRECONDITONER is used to improve the matrix 

characteristics by multiplying the coefficient matrix by 

right or left preconditioning matrix[1]. The method to get an 

efficient preconditioning matrix is as follow. Firstly, find a 

temporary sparsified matrix A' as a good approximation of 

original matrix A. Therefore, preconditioning matrix M is 

determined to approximate A'. There are two kinds of sparsity 

patterns: based on adjacent nodes [2] and based on leaves for 

the fast multipole method (FMM) [3]. The sparse approximate 

inverse (SAI) is the main method to calculate preconditioning 

matrix [1].The sparsity pattern of A' and M sparse are the 

same [4]-[5]. For the Galerkin fast multipole boundary 

element method (GFMBEM) of electrostatic field, A new 

preconditioner which the sparsity pattern of A' and M are 

different is proposed. The matrix of direct integration in FMM 

is selected as A', and is stored using the storage scheme for 

sparse matrix.  

II. THEORY  

The indirect BEM of electrostatic field is based on 

coulomb's law. Generating mesh which the element is linear 

triangular and applying Galerkin weighted residual method, 

the BEM equation can be obtained as (1). 
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The unknown surface charge density is σ, and the known 

voltage is u. In (1), R represents the distance between source 

and field points, ε0 is the vacuum permittivity, e and e' 

respectively represent field and source element indices, mele 

represents the amount of element, Ne,i represents the 

interpolation function of the ith node at element e. Let σ/ε0 be 

the unknown variable, denoted by λ. The matrix equation can 

be expressed as (2). 

 near far A A Bu                                 (2) 

Anear represents coefficient matrix calculated by direct 

integration, and is sparsified. So Anear can be stored by storage 

scheme for sparse matrix. Then Anear is selected as A' to 

calculate M. Afar•λ is quickly calculated by FMM [6].  

The solver is selected restarted GMRES(m). The left 

preconditioner is shown in (2). 

  M A M B u                                 (2) 

And, right preconditioner is shown in (3). 

 A M B Mx u  ,  = x                          (3) 

All residual vectors and their norms that are computed by 

left preconditioner correspond to zm=M(Bu-Aλm), instead of 

the unpreconditioned residuals zm=Bu-Aλm. However the right 

preconditioner do not change the residuals norm. In order to 

compare these two method, the relative residual norm is used 

as the stopping criterion. There are different neighbor 

definitions based on different pattern. 

The first pattern is based on adjacent nodes. Two nodes are 

called neighbors if they are in one element. Each node is also a 

neighbor of itself. As shown in Fig. 1(a), node a have 8 

neighbors. The preconditioning matrix is denoted by Mnode. In 

GFMBEM, the sparsity pattern of B is also based on adjacent 

nodes.  

Secondly, the pattern of Mleaf is based on leaves for FMM. 

Because the oc-tree is created based on the center of element 

in GFMBEM, and a node is considered to be in the leaf of its 

element. So a node may be in different leaves, such as node b 

in Fig. 1(b) belongs to leaf 1 and 2. Therefore, the nodes in 

leaf 1 are neighbors of node a, and all nodes in leaf 1 and leaf 

2 are the neighbors of node b. Besides, the node indices do not 

to be arranged to be sequential. Compared with the method in 

[4], the calculation is reduced. 
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Fig. 1  Definition of neighbors, (a) based on adjacent nodes, (b) based on 

leaves. 

Thridly, The pattern of Mnear is same as Anear. The amount of 

T 



nonzero entries and calculation complexity in the three 

sparsity pattern increases gradually. 

Since Anear is stored, and the sparsity pattern of M is 

selected, M can be obtained from Anear by using SAI based on 

the minimization of Frobenius norm. The right-approximate 

inverse of Anear  can be expressed as (4). 
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where ej and mj respectively represent the jth column of I 

and M. N represents the amount of unknowns. The SAI 

algorithm to calculate M is as follows [4]. 

Let S={(i,j)|1≤i,j≤N, M(i,j)≠0} represent the set of indices 

of nonzero entries in M. For every mj. 

(1) Let J={i|(i,j)∈S} represent the set of row indices of 

nonzero entries in  mj. 

(2) Let I={i|Anear(i,J)≠0}represent the set of row indices of 

nonzero entries in Jth colunm of Anear. 

(3) Let A'near=Anear(I,J) represents the sub-matrix of Anear 

formed from I and J. 

(4) min ||A'near(I,J)•mj (J)=ej(I)||2 to obtain mj (J). Since 

A'near is small, the least square problem can be solved by  QR 

decomposition. 

The left-approximate inverse can be calculated by the same 

algorithm by replacing Anear and M with  A
T

near and M
T
, 

respectively. In order to cooperate with the algorithm,  Anear, B, 

and M are stored by the compressed sparse row (CSR) format 

in left-preconditioned GMRES(m), and the compressed sparse 

column (CSC) format in right-preconditioned GMRES(m). 

III. NUMERICAL RESULTS 

The code is written in FORTRAN language. In all examples, 

the expansion order of FMM is 4, m is 8. The stopping 

criterion are: (1) the relative residual norm is less than 1×10
-6

, 

(2) the max restart number is over 21.  

The first example is two spheres model. The node number is 

1,784, and layers number of oc-tree is 4. The nonzero entries 

of Mnode, Mleaf, and Mnear is respectively 12,457, 97,971, and 

899,133. The structure of Mnode is shown in Fig. 2(a), and the 

convergence using different left preconditioning matrix is 

shown in Fig. 2(b). 
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Fig. 2  Results of example 1, (a)sparsity structure of Mnode, (b)convergence of 

different preconditioners. 

The three preconditionering matrix can achieve quick 

convergence. The same convergence rate can be achieved by 

Mnode, though the calculation complexity is least. 

The second example is three paralleled torus. The node 

number is 6,720, and layers number is 5. Using this example, 

the different between left and right preconditioner is research. 

As we known, The eigenvalues are more concentrated near 1, 

the convergence rate is more quick. The distribution of 

eigenvalues is shown in Fig. 3(a) where the coefficient matrix 

is calculated by traditional BEM. Besides, Mnode is selected as 

preconditioning matrix, the convergence compared with 

ILUT(p,) is shown in Fig. 3(b). 
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Fig. 3  Results of left and right preconditioner, (a) eigenvalues distribution, 

(b)convergence. 

The eigenvalues distribution of left and right preconditioner 

is almost the same, and the matrix characteristics is both 

improved. Therefore, the convergence rate is same. This two 

preconditioners are both efficient. 

The third example is simplified model of corona rings in 

converter valve. The unknowns number is 19,200. The precon-

ditioner is left preconditioning based on adjacent nodes. 

Comparing with the proposed method, the temporary 

sparsified matrix A' is also based on adjacent nodes in [4]. The 

results of the two methods are shown in table I. 
TABLE I 

COMPARISON OF TWO METHOD 

Method Method in [4] Proposed method 
layers 3 5 7 3 5 7 

Number of 

restart 

for convergence 
9 9 9 2 2 2 

Calculating time 

of M (s) 28.5 28.5 29.3 78.9 35.8 33.6 

Total time (s) 7463.4 2152.6 3027.9 6375.6 1097.6 1109.6 

When the number of layers is small, the entries amount of 

Anear is more, so the calculating time of M is more. The 

proposed method is more efficient. Though calculating time of 

M is slightly larger, the total time is obvious smaller. 
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